1. Rewrite the following using a rational (fractional) exponent:

$$\sqrt[3]{x^5}$$

$$\sqrt{x^3}$$

$$\sqrt[5]{x}$$

$$\left(\sqrt[7]{x}\right)^4$$

2. Rewrite the following in radical form:

$$x^{\frac{3}{4}}$$

$$x^{\frac{5}{4}}$$

$$r^{\frac{1}{3}}$$

$$x^{\frac{1}{2}}$$

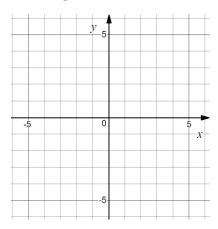
3. Simplify $36^{\frac{3}{2}}$

4. Simplify $64^{\frac{2}{3}}$

5. Solve $x^2 - 20 = -84$

6. Solve. Make sure to check for extraneous solutions!

$$3\sqrt{3x+7}=15$$


$$x = \sqrt{13x - 30}$$

$$\sqrt{x+2} + 4 = 1$$

$$\sqrt{3x+1} = \sqrt{x+3}$$

$$5 = \sqrt[3]{x - 10}$$

11. Graph $f(x) = \sqrt{x-2} + 3$

12. Simplify: $\sqrt[3]{5x^4} \cdot \sqrt[3]{x^2} \cdot \sqrt[3]{25x^3}$

13.
$$\sqrt[3]{\frac{243x^4}{3x}}$$

$$f(x) = x^2 + 4x + 3$$
 $g(x) = x + 1$

$$g(x) = x + 1$$

$$h(x) = x^2$$

$$h(x) = x^2 \qquad m(x) = \sqrt{x+2}$$

Perform the indicated operation and simplify:

14.
$$f(x) + g(x)$$

15.
$$f(x) \cdot h(x)$$

16.
$$h(x) - f(x)$$

16. h(x) - f(x) 17. $\frac{f(x)}{g(x)}$ and give the domain

20.
$$g(m(7))$$

21. Identify the inverse of the relation:

Relation

Х	-2	-1	0	1	2	3
У	-6	-3	1	2	4	7

Inverse

Х			
у			

Is the inverse a function? Explain.

22. Find an equation of the inverse function.

$$f(x) = 3x - 5$$

23. Hillary said the inverse of f(x) = 2x - 3 is

$$f^{-1}(x) = \frac{1}{2}x + 3$$
. Is she correct? Use a graph or compositions to explain how you know and make sure to SHOW WORK!